If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-41x^2=-44032
We move all terms to the left:
-41x^2-(-44032)=0
We add all the numbers together, and all the variables
-41x^2+44032=0
a = -41; b = 0; c = +44032;
Δ = b2-4ac
Δ = 02-4·(-41)·44032
Δ = 7221248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7221248}=\sqrt{4096*1763}=\sqrt{4096}*\sqrt{1763}=64\sqrt{1763}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-64\sqrt{1763}}{2*-41}=\frac{0-64\sqrt{1763}}{-82} =-\frac{64\sqrt{1763}}{-82} =-\frac{32\sqrt{1763}}{-41} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+64\sqrt{1763}}{2*-41}=\frac{0+64\sqrt{1763}}{-82} =\frac{64\sqrt{1763}}{-82} =\frac{32\sqrt{1763}}{-41} $
| (9/4)v+4/5=7/8 | | 3(x+4)=2x+4x-6x | | 6(e+1)=48 | | 6(e+2)=48 | | -24.6=c/0.1=3.4 | | y-14=63 | | g2+23g+22=0 | | 3/5x-10x=1/2x+1 | | 3x+28=5x-8=180 | | 6x-0.61=0.7(2-x) | | 2=4u+6 | | 6x-103=83 | | 7(1+2x)-(8x-3)=-20 | | 2x+7.3=5.9 | | 1/2x-17=-23 | | -(a+2)+4=-6-2(a+2) | | 2(3n-5)=8 | | 11d+3=14 | | 5e=-25 | | 40-6a=-4(7-7a) | | 1+2s=35 | | 3x-5+x=2(2x-5) | | -21-5v=-4(-6+5v) | | 13x+6=7x-5 | | 2(3w+7)+2(w)=4 | | w(-0.25)=4(1-0.25) | | 5k-24=2(2+4k)-4 | | -4r-7r=-2r | | 5(3-4x)+12x=-6x+6.4 | | -2x-8x=-10+3x-3x | | 4(7+5x^)=348 | | G(x)=5x^2-6x+1 |